python 实现Edmonds-Karp算法

Edmonds-Karp算法介绍

Edmonds-Karp算法是一种用于解决最大流问题的算法,在计算机科学中广泛应用。以下是关于Edmonds-Karp算法的详细解释:

算法概述

Edmonds-Karp算法是基于Ford-Fulkerson方法的改进,它通过广度优先搜索(BFS)来寻找增广路径。增广路径是网络中从源点到汇点的一条路径,该路径上至少存在一条边,其剩余容量大于0。Edmonds-Karp算法的核心在于,它每次寻找的都是从源点到汇点的最短增广路径,并通过这条路径来增加流量。

算法步骤

初始化:将所有边的流量设置为0,即初始流量为0。
寻找增广路径:使用广度优先搜索(BFS)在剩余网络中寻找从源点到汇点的最短路径。剩余网络是原网络的一个子图,只包含剩余容量大于0的边。
更新流量:如果找到了增广路径,计算路径上的最小剩余容量,并将其作为增加的流量。然后,更新路径上所有边的流量(增加正向边的流量,减少反向边的流量)。
重复过程:重复步骤2和3,直到无法再找到增广路径为止。
输出结果:当没有更多的增广路径时,算法结束,此时从源点到汇点的流量即为最大流。

算法特性

时间复杂度:Edmonds-Karp算法的时间复杂度为O(V * E^2),其中V是图中顶点的数量,E是图中边的数量。在最坏情况下,算法可能需要进行O(E)次迭代,每次迭代的时间复杂度为O(V + E)。由于使用了BFS来寻找最短路径,这确保了每次迭代增加的流量都是最优的。
空间复杂度:Edmonds-Karp算法的空间复杂度为O(V^2),主要是因为它需要使用一个大小为V的队列来存储BFS过程中的顶点。
适用性:Edmonds-Karp算法在处理较小规模的图时表现良好,但在处理大规模图时可能会面临效率问题。通过求解最大流问题,可以优化网络中的流量分配,确保资源的有效利用。

注意事项

虽然Edmonds-Karp算法能够求解最大流问题,但在实际应用中需要根据问题的规模和复杂度选择合适的算法。对于大规模图,可能需要考虑使用更高效的算法来避免性能瓶颈。同时,由于算法涉及到网络流量和资源分配等敏感领域,因此在实际应用中需要谨慎处理,确保算法的准确性和可靠性。

Edmonds-Karp算法python实现样例

Edmonds-Karp算法是一种求解最大流问题的算法,基于Ford-Fulkerson算法。以下是一个Python实现的Edmonds-Karp算法。

from collections import defaultdict

class EdmondsKarp:
    def __init__(self, graph):
        self.graph = graph
        self.num_vertices = len(graph)
        
    def bfs(self, s, t, parent):
        visited = [False] * self.num_vertices
        visited[s] = True
        queue = []
        queue.append(s)
        
        while queue:
            u = queue.pop(0)
            for v in range(self.num_vertices):
                if visited[v] == False and self.graph[u][v] > 0:
                    queue.append(v)
                    visited[v] = True
                    parent[v] = u
                    
                    if v == t:
                        return True
                        
        return False
        
    def edmonds_karp(self, source, sink):
        parent = [-1] * self.num_vertices
        max_flow = 0
        
        while self.bfs(source, sink, parent):
            path_flow = float("Inf")
            s = sink
            while s != source:
                path_flow = min(path_flow, self.graph[parent[s]][s])
                s = parent[s]
                
            max_flow += path_flow
            
            v = sink
            while v != source:
                u = parent[v]
                self.graph[u][v] -= path_flow
                self.graph[v][u] += path_flow
                v = parent[v]
                
        return max_flow

# 示例用法
graph = [[0, 16, 13, 0, 0, 0],
         [0, 0, 10, 12, 0, 0],
         [0, 4, 0, 0, 14, 0],
         [0, 0, 9, 0, 0, 20],
         [0, 0, 0, 7, 0, 4],
         [0, 0, 0, 0, 0, 0]]

source = 0
sink = 5

ek = EdmondsKarp(graph)
max_flow = ek.edmonds_karp(source, sink)
print("最大流量:", max_flow)

在上面的示例中,我们定义了一个名为EdmondsKarp的类,该类接受一个表示有向图的邻接矩阵作为输入。bfs方法用于使用BFS搜索从源节点到汇点的增广路径,并返回是否找到增广路径。edmonds_karp方法使用Edmonds-Karp算法来计算最大流,返回最大流量。

在示例用法中,我们使用一个示例图来计算从源节点0到汇点5的最大流量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/889121.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SQL进阶技巧:Order by 中 NULLS LAST特性使用?

目录 1 需求描述 2 数据准备 3 问题分析 4 小结 如果觉得本文对你有帮助,想进一步学习SQL语言这门艺术的,那么不妨也可以选择去看看我的博客专栏 ,部分内容如下: 数字化建设通关指南 专栏 原价99,现在活动价59…

ElasticSearch学习笔记(三)Ubuntu 2204 server elasticsearch集群配置

如果你只是学习elasticsearch的增、删、改、查等相关操作,那么在windows上安装一个ES就可以了。但是你如果想在你的生产环境中使用Elasticsearch提供的强大的功能,那么还是建议你使用Linux操作系统。 本文以在Ubuntu 2204 server中安装elasticsearch 8.…

MATLAB智能优化算法-学习笔记(4)——灰狼优化算法求解旅行商问题【过程+代码】

灰狼优化算法(Grey Wolf Optimizer, GWO)是一种基于灰狼社会行为的元启发式算法,主要模拟灰狼群体的捕猎行为(包括围攻、追捕、搜寻猎物等过程)。多旅行商问题(Multi-Traveling Salesman Problem, mTSP)是旅行商问题(TSP)的扩展,它涉及多个旅行商(车辆)从一个起点城…

使用AI编码,这些安全风险你真的了解吗?

前言 随着AI技术的飞速发展与普及,企业开发人员对AI编码助手工具如Copilot的依赖度日益增强,使用AI编码助手工具虽然能显著提升编程效率与质量,但同时也存在一系列的潜在风险。 许多开发人员可能未意识到,如果他们的现有代码库中…

CMSIS-RTOS V2封装层专题视频,一期视频将常用配置和用法梳理清楚,适用于RTX5和FreeRTOS(2024-09-28)

【前言】 本期视频就一个任务,通过ARM官方的CMSIS RTOS文档,将常用配置和用法给大家梳理清楚。 对于初次使用CMSIS-RTOS的用户来说,通过梳理官方文档,可以系统的了解各种用法,方便大家再进一步的自学或者应用&#x…

数据结构——七种排序(java)实现

文章目录 直接插入排序希尔排序选择排序冒泡排序快速排序归并排序计数排序 直接插入排序 思想: /*** 直接插入排序* 具有稳定性* 时间复杂度为:(计算时间复杂度的时候应计算执行次数最多的语句类,在直接插入排序中次数最多的语句…

Ajax ( 是什么、URL、axios、HTTP、快速收集表单 )Day01

AJAX 一、Ajax是什么1.1名词解释1.1.1 服务器1.1.2 同步与异步1. 同步(Synchronous)2. 异步(Asynchronous)3. 异步 vs 同步 场景4. 异步在 Web 开发中的常见应用: 1.2 URL 统一资源定位符1.2.1 URL - 查询参数1.2.2 ax…

maven打包常用命令

跳过tset打包 mvn package -Dmaven.test.skiptrue

什么是 ARP 欺骗和缓存中毒攻击?

如果您熟悉蒙面歌王,您就会明白蒙面歌王的概念:有人伪装成别人。然后,当面具掉下来时,您会大吃一惊,知道了这位名人是谁。类似的事情也发生在 ARP 欺骗攻击中,只是令人惊讶的是,威胁行为者利用他…

获取期货股票历史数据以及均线策略分析

【数据获取】银河金融数据库(yinhedata.com)能够获取国内外金融股票、期货历史行情数据,包含各分钟级别。 【搭建策略】均线策略作为一种广泛应用于股票、期货等市场的技术分析方法,凭借其简单易懂、操作性强等特点,深…

AI绘画Stable Diffusion WebUI 2个超好用的办法-实现图片光照调节,快速生成你想要的光感大片!

大家好,我是画画的小强 在摄影艺术中,灯光的运用对于照片的质量和情感表达至关重要。它不仅能够彰显主题,还能为画面增添深度与立体感,帮助传递感情,以及凸显细节之美。 下面,我将向大家展示如何用AI绘画…

【动态规划-最长公共子序列(LCS)】【hard】【科大讯飞笔试最后一题】力扣115. 不同的子序列

给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 10^9 7 取模。 示例 1: 输入:s “rabbbit”, t “rabbit” 输出:3 解释: 如下所示, 有 3 种可以从 s 中得到 “rabbit”…

kafka创建多个分区时,分区会自动分配到多个不同的broker

1.分区只有一个时所有的消息生产和消费都集中在单个Broker上,多个broker只是提高了抗风险能力(因为副本存在不同的broker上,主节点挂掉,可以重新选取副本为主节点)。 2.没有消息顺序性要求可以多个分区,注意…

SpringBoot使用esayExcel根据模板导出excel

1、依赖 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.3</version></dependency> 2、模板 3、实体类 package com.skybird.iot.addons.productionManagement.qualityTesting…

获取期货股票分钟级别数据以及均线策略

【数据获取】 银河金融数据库&#xff08;yinhedata.com&#xff09; 能够获取国内外金融股票、期货历史行情数据&#xff0c;包含各分钟级别。 【搭建策略】 均线策略作为一种广泛应用于股票、期货等市场的技术分析方法&#xff0c;凭借其简单易懂、操作性强等特点&#xf…

怎么高效对接SaaS平台数据?

SaaS平台数据对接是指将一个或多个SaaS平台中的数据集成到其他应用或平台中的过程。在当前的数字化时代&#xff0c;企业越来越倾向于使用SaaS平台来管理他们的业务和数据。然而&#xff0c;这些数据通常散布在不同的SaaS平台中&#xff0c;这对于企业数据的整合和分析来说可能…

Centos Stream 9备份与恢复、实体小主机安装PVE系统、PVE安装Centos Stream 9

最近折腾小主机&#xff0c;搭建项目环境&#xff0c;记录相关步骤 数据无价&#xff0c;丢失难复 1. Centos Stream 9备份与恢复 1.1 系统备份 root权限用户执行进入根目录&#xff1a; cd /第一种方式备份命令&#xff1a; tar cvpzf backup.tgz / --exclude/proc --exclu…

04-SpringBootWeb案例(中)

3. 员工管理 完成了部门管理的功能开发之后&#xff0c;我们进入到下一环节员工管理功能的开发。 基于以上原型&#xff0c;我们可以把员工管理功能分为&#xff1a; 分页查询&#xff08;今天完成&#xff09;带条件的分页查询&#xff08;今天完成&#xff09;删除员工&am…

CAN和CANFD如何转换和通信

随着科技的发展&#xff0c;汽车电子和工业领域中CAN通信需要承载数据量也越来越大&#xff0c;传统CAN通信有了向CANFD通信过渡的倾向。在实现过渡的过程中可能会出现自己设备是CAN通信&#xff0c;客户设备是CANFD通信的情况&#xff0c;或者自己设备是CANFD通信&#xff0c;…

红帽7—Mysql路由部署

MySQL Router 是一个对应用程序透明的InnoDB Cluster连接路由服务&#xff0c;提供负载均衡、应用连接故障转移和客户端路 由。 利用路由器的连接路由特性&#xff0c;用户可以编写应用程序来连接到路由器&#xff0c;并令路由器使用相应的路由策略 来处理连接&#xff0c;使其…